Watch as Bacteria Develop Antibiotic Resistance in 12 Days


The researchers — who published this new visualization method in the journal ScienceThursday — hope this technique will help them better understand the complicated patterns underlying antimicrobial resistance, which is a growing concern in hospitals around the world.

By having the e. coli bacteria grow across bands of increasingly stronger doses of antibiotic, the scientists could make it look like evolution was marching across the dish. But the setup had another effect that the researchers didn’t expect. The faster growing colonies of resistant bacteria were cutting off the growth of slower but more drug-resistant colonies and becoming more successful.

When bacteria evolve drug resistance, it usually comes at some kind of cost to the bug. In the presence of an antibiotic, faster growing colonies don’t grow as robustly as the slower ones – but that often doesn’t matter. If the strain wants to live on, it just needs to be the first to get to the next human or food source. “[This] phenomenon has been very, very tough to study classically,” says Michael Baym, the postdoc who built the 4-by-2-foot petri dish in Kishony’s lab. In his contraption, it’s impossible to miss.

And if you can see it, maybe you can start to study it. Using something as simple as a giant petri dish like this could help scientists open up that spatial dimension that’s been missing from the lab, says Pamela Yeh, a microbiologist at UCLA who was not involved in the experiment. “Hopefully this will put back in people’s minds how important the spatial element can be.”




disinformation®­ curates the most shocking, unusual and quirkiest news articles, podcasts and videos on the web, most of which are submitted by the site’s visitors.